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Stochastic simulations of fluid flow deal with the evolution of uncertainties in initial and boundary
conditions, parameters, and physical models. These uncertainties may lead to qualitatively different
behaviors of the flow, raising the question of how to visualize random flow variables in a meaningful
way. Our approach is to cluster the simulation data by qualitative phenomenon and then to compute
average flow quantities within each cluster, a technique we call “clustered ensemble averaging.”
This tactic extends the basic visualization strategy of extracting features from within a computational
domain defined within time and space. The abstract features we seek are defined across the space
of all possible simulations: each feature (cluster) is the subspace of simulations that share a basic
behavior. We illustrate this technique on data from molecular dynamics simulations of laser-assisted
particle removal, where the explosive evaporation of a laser-heated fluid acts on minute particle
contaminants on a substrate, sometimes removing them and sometimes failing to do so. We ran the
simulation a hundred times, comprising a hundred samples of the simulation space, and clustered
each according to the behavior it exhibits. The images that result from clustered ensemble averaging
reveal characteristics common to each cluster that are hidden when the average is calculated over
all outcomes.

Keywords: Molecular Dynamics Simulations, Stochastic Processes, Uncertainty Visualization,
Laser-Assisted Particle Removal.

1. INTRODUCTION

One of the main strategies of visualization is to display
salient features in a dataset so they can be interpreted by
the scientist, engineer, or physician who is analyzing the
data. For three-dimensional (3D) scalar fields, feature-
extraction techniques have been developed to display
boundaries of tissue in medical data.1�2 For 3D vector
fields, feature-extraction techniques have been developed
to display shock fronts3 and vortex cores.4–6 Some of these
techniques have been extended to extract features from
4D time-varying datasets, where the feature extends across
both space and time.7–10 Additional techniques capture fea-
tures that exist in 4D scale space, where cross-sections at
different values of the scale axis correspond to different res-
olutions of the data.11–13 These examples illustrate feature-
detection techniques that have been developed to locate
and display features in two or three spatial dimensions,
and in multidimensional domains of space-time or scale

∗Author to whom correspondence should be addressed.

space. Other visualization techniques merely approximate
the geometric appearance of a feature, matching its shape
to a best-fit model such as an ellipsoid.14 This approach
can be understood as finding an average approximating
shape among all features in a certain equivalence class.

We extend the idea of visualization via feature-detection
to a new level of abstraction by considering a feature that
exists across not only in time and space, but also across a
set of variations. These variations arise from multiple runs
of a stochastic (random) simulation starting from different
initial conditions.

The three-body problem is a simple example that illus-
trates how diverse outcomes can result from minute vari-
ations of initial conditions: in the plane, three particles of
equal mass are assigned positions p1�p2�p3 and velocities
v1�v2�v3 at time t = 0. Each particle has four independent
parameters (two for position and two for velocity), so the
planar three-body problem is characterized by a 12-dim-
ensional parameter space. Although most solutions of the
planar three-body problem appear random and are of min-
imal interest, occasionally a periodic solution is obtained.
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Finding parameters that produce the qualitative behavior
of periodicity is still an area of active research.15 In com-
parison, a computational molecular dynamics simulation
of a thin layer of fluid may have more than a thousand par-
ticles. Although the 4000-dimensional parameter space of
initial conditions is very large, the number of qualitatively
distinct outcomes may be small.

Stochastic processes may be intuitively defined as sys-
tems which evolve probabilistically in time. Mathemati-
cally described, a stochastic process is a time-dependent
random variable or field that evolves in time. In the present
context, these processes are obtained as solutions to evo-
lution equations with random initial and boundary condi-
tions, and/or random physical and geometric parameters.
The stochastic simulations of a flow configuration (cre-
ated by some set of external conditions) are similar in
some sense but differ from one another in detail. In order
to analyze the underlying phenomena in such flows, one
needs to define the mean value of the flow properties.
A meaningful mean value is defined by the statistical aver-
age of the ensemble of all similar flows. This permits
decomposition of a field variable into a mean and a fluc-
tuation (deviation). The mean field then allows one to
extract the “deterministic” organized structures underlying
the random flow. The visualization of probabilistic evolu-
tion of fluid flows can be considered a form of “uncertainty
visualization.”16�17

We present a technique for displaying the mean behav-
iors of a flow that exhibits two qualitatively distinct out-
comes. Multiple runs of the simulation yield datasets that
are assigned to one of two clusters. Ensemble averaging
within one cluster reveals behavior that is not evident from
taking an overall average. We demonstrate the technique on
an example: a simulation of laser-assisted particle removal.

The remainder of the paper is organized as follows.
Section 2 provides background into laser-assisted particle
removal. Section 3 describes the computational simulation
model. Section 4 describes how the particle data from the
simulation is converted into continuous density fields and
how these datasets are clustered. Section 5 describes how
the particle data from the simulation is converted into con-
tinuous velocity data. Section 6 summarizes the results.

2. LASER-ASSISTED PARTICLE REMOVAL

Manufacturing processes for hi-tech devices in microelec-
tronics or data storage continue to demand higher reso-
lution, smaller linewidths, miniaturization, and vanishing
mechanical clearances. Since it is not currently possible to
totally eliminate all contamination sources during indus-
trial processing, there is an ever-increasing need to develop
methods for removing minute particle contamination from
critical surfaces. Currently, the most widely used industrial
cleaning techniques use liquid chemicals, which are them-
selves sources of contamination. Removing these particle
contaminants is difficult since a submicron particle can

Particle

Substrate

Vapor ETM
Vapor ETM

Laser

Liquid ETM

Fig. 1. Laser assisted particle removal (LAPR). Left panel shows cir-
cular particle on substrate surface. Vaporized energy transfer medium
(ETM) is directed toward the substrate surface. The ETM condenses on
the surface as shown in the middle panel. Laser energy is then directed
toward the particle and liquid ETM, causing explosive boiling of the
ETM and removal of the particle, as shown in the right panel.

adhere to a surface with a force that is over a million times
its weight.18 A cleaning technique for submicron particles
should be effective for particle removal, not cause surface
damage, or add any extra contamination to the surface.
Additionally, we want the process to be efficient, simple,
fast, and chlorofluorocarbon-free.

Laser assisted particle removal (LAPR) is a technique,
which meets the criteria listed above, for removing small
particles (as small as 50 nm, though currently used prin-
cipally for particles ∼1 �m in diameter) from a substrate.
In this process, a small amount of energy transfer medium
(ETM), usually a mixture of water and alcohol, is con-
densed onto the substrate, and then laser energy is directed
at the substrate surface, as shown in Figure 1. This energy
is absorbed by the ETM fluid, and perhaps also by the
substrate and/or the particle, and results in removal of the
ETM and sometimes in the removal of the particle. Particle
removal is thought to be caused by a combination of three
mechanisms: explosive boiling of the liquid ETM, thermal
expansion of the particle (“hopping” effect), and thermal
expansion of the substrate (“trampoline” effect).19

A single optimized laser pulse has been shown to effec-
tively remove 90% of particles with sizes on the order of
1 �m.20 Repeating the process allows removal efficiency
of nearly 100% to be achieved, typically within five to
eight repetitions.20 Two major factors influence the particle
removal efficiency of LAPR:
(1) the adhesion forces holding the particle to the substrate
surface, and
(2) the laser-induced particle removal forces.

It is well known that the cleaning efficiency increases with
increasing laser fluence, but at very high laser fluences
substrate surfaces are easily damaged by laser irradiation.
Thus, determining the optimal laser cleaning conditions
and clearly understanding the interaction mechanisms
between particle and substrate surface are the goals of
modeling the LAPR process.

3. SIMULATION MODEL

A two-dimensional molecular model was constructed for
simulating LAPR. The model consists of a substrate, a
particle, and the ETM fluid. To reduce computational
requirements, a very simple molecular model was applied.
All interactions between molecules in the ETM fluid,

2 J. Comput. Theor. Nanosci. 3, 1–9, 2006
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Table I. Lennard-Jones potential parameters for inter-
actions between the ETM, particle, and substrate.

Interaction � �

ETM–ETM 1.0 1�0
ETM–particle 1.0 1�5
Particle–particle 1.0 10�0
ETM–substrate 1.0 1�5
Particle–substrate 1.0 1�5

substrate, and particle were modeled using the Lennard-
Jones 12-6 potential:21

��rij �= 4�

[(
�

rij

)12

−
(
�

rij

)6
]

(1)

where rij is the distance between molecules i and j , � is
a measure of the molecule’s diameter (the distance where
the energy is zero), and −� is the minimum value of the
energy. The simulations were run using reduced (nondi-
mensional) units,21 with the mass of all molecules equal.
(For convenience, in addition to reduced units, we will
present dimensional units assuming argon molecules; for
argon, � = 0�43 nm and �= 1�67×10−21 J.) The Lennard-
Jones potential parameters for the interactions between the
ETM fluid, particle, and substrate are given in Table I.

The substrate is composed of five layers of molecules
arranged in a hexagonal lattice, which is the two-dimen-
sional crystal structure of the Lennard-Jones solid. During
the simulation, the molecules of the substrate interact
(via the potential function) with nearby fluid and particle
molecules, but the substrate molecules are held in fixed
positions. This is partly for additional computational cost
savings, but mainly because thermal expansion of the sub-
strate in the periodic geometry would likely cause buck-
ling, which would substantially complicate our analysis.
The rigid substrate approximation avoids this, although it
does mean that the “trampoline” mechanism for particle
removal is not present in these simulations.

The particle is circular, with a diameter of 19�
(6.46 nm), and is also composed of molecules in a hexag-
onal arrangement. The lowest layer of molecules that com-
pose the particle is in contact with the molecules in the
uppermost layer of the substrate.

Simulations were conducted on a two-dimensional com-
putational domain of size x = 202� (68.68 nm) by
y = 240� (81.6 nm). The domain is periodic in x and
molecules that reach the maximum y-value are reflected
back into the domain. This reflection is necessary to pre-
vent the entire fluid from evaporating through the top of
the domain. Since the important part of the simulation
occurs in the lower half of the domain, the reflection con-
dition has no effect on the results that follow.

After placing a particle on the substrate within a com-
putational cell, fluid is added to the cell by performing
a Grand Canonical Monte Carlo (GCMC) simulation.
GCMC is a stochastic technique in which the number

of molecules is allowed to vary according to a specified
chemical potential.21 This is accomplished through
“moves” in which molecules are either displaced, created
at random positions, or destroyed. When completed, as
determined by stabilization of the total number of mol-
ecules, a liquid (ETM) film of varying thickness overlies
the substrate and the particle, as shown in the first column
of Figure 2.

Because particle removal is a discrete event, in order
to determine removal efficiency it is necessary to simulate
the removal process many times, starting from various ini-
tial conditions. Additional configurations were generated
by allowing the GCMC simulation to run for an additional
short time (100 cycles). Initial configurations for an ETM
thickness of 50� (17 nm) are shown in the leftmost col-
umn of Figure 2.

Fig. 2. Snapshots from LAPR simulations. The substrate is shown as
a dark gray band at the bottom of each panel, the ETM fluid molecules
are black, and the particle, which starts in contact with the substrate,
is circular and gray. Each row represents a simulation that began with
slightly different initial conditions. Each column is time advanced by
4,000 iterations (0.044 ns). Substrate temperature is 1.7 (205.7 �K). ETM
fluid thickness is 50� (17 nm). In the right column, we see that particle
ejection occurs in half of the simulations.

J. Comput. Theor. Nanosci. 3, 1–9, 2006 3



R
E
S
E
A
R
C
H
A
R
T
IC
L
E

Clustered Ensemble Averaging: A Technique for Visualizing Qualitative Features of Stochastic Simulations Smith et al.

In the molecular dynamics simulations, a fifth-order
Gear predictor-corrector algorithm was used to integrate
the equations of motion, with a time step of 0.005 (5�5×
10−17 s). After 250 time steps, the substrate temperature
was instantaneously increased from its base value of 0.4
(48.4 �K) to a value between 0.5 (60.5 �K) and 5.0
(605 �K). Increasing the substrate temperature in this man-
ner approximates the effect of laser heating in the case
where the laser energy is absorbed by the substrate, rather
than by the fluid. For more details on the LAPR simula-
tions, see Ref. [22].

Each simulation was run for 30,000 time steps (repre-
senting 0.33 ns of physical time), which, except in the
case of temperature equal to 0.5 (60.5 �K), was enough to
observe the complete ejection of the ETM fluid layer, and,
in some cases, particle removal. Typical results are shown
in Figure 2. In this figure, each column is time advanced
by 4,000 iterations (0.044 ns), and each row began with
slightly different initial conditions (i.e., number of ETM
molecules, position of ETM molecules, and velocity of
ETM molecules). The substrate temperature for each of
these simulations was 1.7 (205.7 �K). By examining the
rightmost column, we see that of the ten simulations, five
resulted in particle removal, and five did not. Since the
initial conditions for the set of ten simulations varied only
slightly, and the substrate temperature was identical for
each simulation, why was the particle removed in some
simulations and not in others?

4. DATASET VISUALIZATION

Before describing the process of visualizing the fluid flow
to answer this question of why the particle is sometimes
removed, we begin by defining variables. Let T be the sub-
strate temperature, t be the elapsed time, W be the width
of the ETM fluid layer, and X represent the simulation
number (or the initial conditions of the simulation). Then,
Figure 2 shows t increasing to the right and X increasing
upward, while T = 1�7, and W = 50� .

We can also fix the elapsed time, t, and the temperature,
T , and vary the initial conditions, X, and the ETM thick-
ness, W , as shown in Figure 3. This figure consists of
snapshots from LAPR simulations at t = 30,000 (0.33 ns),
and T = 1�7 (205.7 �K), where in this case, the ETM fluid
thickness, W , varies from very thin (6� or 2.04 nm), to
very thick (70� or 23.8 nm). Again, notice the range of
behaviors that occur in LAPR: sometimes the particle lifts
with the ETM fluid, and sometimes it doesn’t, even as the
thickness of the fluid layer varies. Looking at each snap-
shot in this manner, it is difficult to extract meaningful
data from the simulations since the dimension is so large.

We get a better picture of the average response for a
given T and W by averaging over different initial condi-
tions; that is, we integrate out the variable X. This gives
rise to Figure 4, which shows fluid thickness, W , increas-
ing to the right, and temperature, T , increasing upward

Fig. 3. Snapshots of LAPR simulations. For all simulations, the sub-
strate temperature, T , is 1.7 (205.7 �K) and the elapsed time, t, is 30,000
(0.33 ns). Each column shows a different ETM thickness, W , with W

increasing to the right, and taking on the values 6� (2.04 nm), 10�
(3.4 nm), 25� (8.5 nm), 50� (17 nm), and 70� (23.8 nm). Each row
shows a simulation that began with slightly different initial conditions, X.

from 1.5 (181.5 �K) to 2.0 (242 �K), by 0.1 (12.1 �K). In
particular, the third row from the bottom shows the results
of averaging out all the X’s from Figure 3. Notice there
is a bimodal appearance of the particle, especially in the
middle columns, where you can see an average position
of the particle in contact with the substrate and another
average position between the substrate and the average
lifted fluid layer. Each of these two modes corresponds to
a subset (called an ensemble) of the simulations shown
in Figure 3. Rather than averaging all of the simulations,
we can instead average only those simulations in the first
ensemble, where the particle is not removed, as shown in

4 J. Comput. Theor. Nanosci. 3, 1–9, 2006
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Fig. 4. Averages of snapshots of LAPR simulations. Elapsed time t is
30,000 (0.33 ns). ETM thickness W increases to the right and substrate
temperature T increases upward, from 1.5 (181.5 �K) to 2.0 (242 �K)
by 0.1 (12.1 �K). Note that the combination of high temperature and
medium width (upper row, middle column) results, on average, in particle
removal.

the upper panel of Figure 5, and then average the sim-
ulations in the second ensemble, where the particle is
removed, as shown in the lower panel of Figure 5. The
missing entries (empty rectangles) indicate that there is no
data. For example, at the bottom right of the lift ensemble
(lower panel) we see that particle removal did not occur
in any of the simulations.

For the simulations presented thus far, there were 10
initial conditions, X, for each ETM thickness, W , and tem-
perature, T . For comparison, we also conducted 90 addi-
tional simulations for the case T = 1�6 �193�6 �K), and
W = 50� (17 nm), making a total of 100 simulations for
that case. Figure 6 shows the average of the initial 10 sim-
ulations (left panel) and the average of all 100 simulations
(right panel) at t = 30,000 (0.33 ns). With more simula-
tions to average, the variance is reduced and the resulting
average image looks much smoother, but at the expense
of more compute time. We note that each simulation took
about 14 minutes on a desktop computer with a 1.2 GHz
processor and 256 MB of RAM.

Although 100 simulations provides a smoother average,
the trajectory of the particle is difficult to perceive. By
calculating the ensemble averages of only the particle
molecules (averaged over both time, t, and initial

Fig. 5. Ensemble averages of LAPR simulation snapshots for simu-
lations where there is not particle removal (upper) and for simula-
tions where there is particle removal (lower). Elapsed time t is 30,000
(0.33 ns). ETM thickness W increases to the right, and substrate temper-
ature T increases upward, from 1.5 (181.5 �K) to 2.0 (242 �K).

J. Comput. Theor. Nanosci. 3, 1–9, 2006 5
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Fig. 6. Averages of 10 (left) and 100 (right) simulations at temperature
T = 1�6 (193.6 �K), elapsed time t= 30,000 (0.33 ns), and ETM thickness
W = 50� (17 nm).

Fig. 7. Ensemble averages (over time t and simulation X) of particle
trajectories for the case of no particle removal (left) and particle removal
(right). T = 1�6 �193�6 �K), and W = 50� (17 nm). (The contrast was
adjusted to enhance the image.)

conditions, X), the average particle trajectories are easily
seen, as in Figure 7. On the left, is the ensemble average
trajectory of the particle for the 30 simulations where par-
ticle removal did not occur. In this case, it can be seen
that sometimes the particle rolls to the left or right, but the
most likely (darkest) case is no motion at all. On the right
is the ensemble average trajectory of the particle for the
70 simulations where particle removal did occur. In this
case, it can be seen that the most likely (darkest) case is
that the particle lifts off the substrate perpendicular to the
substrate, although it is also possible that the particle will
lift-off the substrate at a slightly different angle.

5. SMOOTHED DENSITY IMAGES

A faster way to produce a smoothed image of the molec-
ular density (as shown in Fig. 6) is illustrated in the
upper panels of Figure 8. The upper left panel shows the
molecules in space with a grid laid over the domain. Each
molecule is assigned a density function

fi�x�= ��x−pi� (2)

where pi is the position of i and � is the Dirac delta distri-
bution. We convolve f =∑

fi with a filter function h�x�

Fig. 8. Smoothed density images. Upper panels illustrate how smoothed
density images are computed: left panel shows molecules in space with
an overlaid grid, middle panel shows molecules each with its density
function centered at the molecule’s position, and right panel shows the
resulting density image. Lower images are examples of smoothed density
images with varying filter sizes. The filter radii used, from left to right,
are 1� (0.34 nm), 8� (2.72 nm), and 32� (10.88 nm).

to blur the molecular densities across the image, as shown
in the upper middle panel of Figure 8. We choose a filter
function with compact support, namely the cubic approx-
imation to the Gaussian given by h�x� = 2x3 − 3x2 + 1,
where x is scaled so that x = 1 at the filter radius, which
is given in spatial coordinates. We can think of the result-
ing image, I�x�, as a scalar function from �2 → �, cor-
responding to the molecular density at a point in space,
where I is given by

I�x�=
∑

i f �x�h�x−pi�∑
i h�x−pi�

(3)

and is illustrated in the upper right panel of Figure 8. We
normalize (divide by the sum of h) because the super-
position of filter functions may sum to something other
than one.

The lower panel of Figure 8 shows the result of this
convolution on a given simulation, producing a sequence
of images with different filter radii. The radii used, from

Fig. 9. Smoothed density images are used to make an isosurface. Upper
panel: time sequence of smoothed density images. Lower left panel:
Smoothed density slices stacked in time. Lower right panel: Isosurface
of density, with particle trajectory shown as dark cylinder.

6 J. Comput. Theor. Nanosci. 3, 1–9, 2006
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Fig. 10. Left: Close-up of density isosurface (right panel of previous
figure) for a simulation where particle removal occurs. Right: Close-up
of density isosurface for a simulation where particle removal does not
occur. Time, t, increases in the vertical direction.

left to right, are 1� (0.34 nm), 8� (2.72 nm), and 32�
(10.88 nm). In each image the color black corresponds to
low density (0 molecules per unit area), while white cor-
responds to high density (typically about 60 molecules per
unit area). Thus, we have transformed a collection of about
8,000 molecules into a continuous scalar-valued density
function.

The upper panel of Figure 9 shows smoothed density
images for a time sequence of simulations where T =
1�5 (181.5 �K), and W = 25� (8.5 nm). If we treat the
time direction as a third spatial coordinate, these density
functions can be stacked up to produce a 3D scalar field
I�x� y� t� as shown in the lower left panel of Figure 9. An
isosurface of this scalar field with density value of about
30 is shown in the lower right panel of Figure 9, where
we see the boundary of the subvolume which contains the
bulk of the fluid molecules. This figure also shows the tra-
jectory of the particle (as a dark cylinder). The bottom of
the trajectory corresponds to the beginning of the simula-
tion where the particle is on the substrate. At the top of
the trajectory, where t = 20,000 (0.22 ns), the particle has
moved away from the bottom of the domain, having been
lifted by the ETM fluid which has moved past the particle.

Figure 10 shows the two lifting behaviors more clearly.
With increasing time, the isosurface containing the volume
of fluid moves away from y = 0. As in Figure 9, the time
direction is aligned vertically, and the y direction of the
image is aligned in the horizontal right direction. The left
panel shows a run where the particle lifts and is removed,
while the right panel shows a run where the particle does
not lift. In both panels, notice that the ETM fluid closest
to the substrate (on the left in the figures) begins to move
before the fluid farthest from the substrate (on the right in
the figures). This difference in velocities is visible as a kink
in the isosurface near t= 0 on the right side of both figures.

6. VECTOR FIELDS AND ENSEMBLES

The previous section showed ensemble averages that dis-
tinguish qualitative behavior of the particle. Figures 7, 8,
and 10 explicitly show examples of particle trajectories in
the two regimes (particle removal and no-removal), and

of the ETM layer’s trajectories in these two regimes. It
is clear that two distinct behaviors occur; the question is,
what property of the ETM causes the difference? The ETM
always lifts whether the particle does or not, and at the
crucial early stage of the simulation, the images of the
ETM density are practically indistinguishable. We were
therefore motivated to look at clustered ensemble averages
of the ETM velocity for evidence of any subtle difference
between the two regimes. This required us to produce a
vector field from discrete particles in motion.

Just as we convolved molecular densities with a filter
function to produce a continuous scalar density field, we
can also convolve the molecular velocities with a filter
function to produce a continuous velocity field. The upper
panel of Figure 11 illustrates this process. The upper left
panel shows several molecules each with a given velocity
vector. A grid is laid over the domain. The upper mid-
dle panel of the figure shows the filter function centered
at each of the molecular positions pi. The vector val-
ued velocity at each grid location is found by summing
the product of the filter function and the velocity for all
molecules:

V�x�=
∑

i vih�x−pi�∑
i h�x−pi�

(4)

Again, we normalize by dividing by the sum of h since
the sum of filter functions applied at a grid point may be
greater than one. As before, we used the cubic interpolat-
ing polynomial h�x�= 2x3−3x2+1, for the filter function,
where x is scaled so that x = 1 at the filter radius, which

Fig. 11. Continuous velocity fields. Upper panels show how a contin-
uous velocity field is constructed from molecular velocities. Upper left
panel: molecules in space with a grid overlaid. Upper middle panel:
each molecule is shown with the filter function centered at the molecules
position. Upper right panel: after summing the product of the filter func-
tion with the velocity, and normalizing, the result is a continuous vec-
tor field on the grid. Lower panels show continuous vector fields using
line integral convolution. Images of continuous vector fields are for the
case of T = 1�7 (205.7 �K), W = 50� (17 nm), t = 30,000 (0.33 ns),
and X = 1, with different filters of varying widths. The widths of the
filters used, from left to right, are 1� (0.34 nm), 8� (2.72 nm), and
32� (10.88 nm).

J. Comput. Theor. Nanosci. 3, 1–9, 2006 7
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Fig. 12. Ensemble averages of molecular dynamics simulations of laser-assisted particle removal. Images are line integral convolutions of averaged
fluid vector field data from the clustered set of simulations where particle removal does not occur (left), from the entire data set of 100 simulations
(middle), and from the clustered set of simulations where particle removal does occur (right). The particle is circular and rests upon a substrate, both
shown as dark gray. Note that in the left image, where particle removal does not occur, the flow field at the bottom of the particle is directed around
the particle, but this behavior is not as pronounced in the middle image, where all data sets have been averaged. Visible in the right image, beneath
the particle, is the vertically directed flow field that is acting to lift the particle.

is given in spatial coordinates. The final velocities on the
grid are shown in the upper right panel of Figure 11.

The lower panels of Figure 11 show the continuous vec-
tor fields of a given simulation for three different filter
radii using line integral convolutions (LIC)23 to display
the vector fields. The LIC images show streamlines of the
flow. The solid black regions correspond to missing data
where no molecule was close enough for its velocity to be
blurred at that point. On the left, using a small radius of
1� (0.34 nm), the sparseness of the data is apparent. The
middle panel shows that by increasing the radius of the
filter function to 8� (2.72 nm), the missing data can be
filled in, leaving missing data mostly at the bottom of the
image. In the right panel, we have further increased the
filter radius to 32� (10.88 nm). We see that although it is
possible to fill in the missing data making a dense vector
field, much of this vector field corresponds to sparse data.

Although the images in the lower panels of Figure 11
were created using only one simulation, the same pro-
cess can be applied to many simulations creating an
image of the average velocity over many runs (namely, the
ensemble-averaged velocity). We see the results of such an
average in Figure 12. For the center panel of Figure 12,
we averaged 100 simulations at T = 1�6 (193.6 �K), t =
30,000 (0.33 ns), and W = 50� (17 nm). For the left
image, we averaged the ensemble of simulations for the
cluster where particle removal did not occur (30 cases),
and for the right image, we averaged the ensemble of sim-
ulations for the cluster where particle removal did occur
(70 cases). In each of these images, we used a filter radius
of 8� (2.72 nm), which corresponds to the lower middle
panel of Figure 11. In each of these images, the particle
and substrate are shown as gray regions to allow these
locations to be seen against the vector field. In the left
panel (the cluster that does not lift) the velocity field at the
base of the particle is clearly directed in an outward direc-
tion forming what looks like a wake around the particle,
while in the middle panel (all images averaged together)

this behavior is not as pronounced. The center panel more
closely matches the right panel where particle removal has
occurred. In the right panel of Figure 12, in the space
between the particle and the substrate, the velocity field
beneath the particle can be seen acting on the particle in
an upward direction, suggestive of the lifting force that
successfully dislodges the particle from the substrate.

7. SUMMARY

By clustering the simulation data by qualitative phe-
nomenon, and then computing average flow quantities
within each cluster, we were able to enhance the flow
quantities for each cluster that were hidden in the overall
average flow quantities. Although we applied this tech-
nique to simulations of laser-assisted particle removal,
clustering the particle removal and non-removal cases, this
technique could be applied to other stochastic simulations
of fluid flow.

In future work we want to address the question of opti-
mal sample size determination, as well as investigate the
use of the unsteady line integral convolution.
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